Is it Safe to Eat?

Part I Directions: For each of the scenarios, using the information provided, complete the table and determine if the food is safe to eat.

Example: Shigella has a generation time of 40 minutes and an infectious dose of 10 cells. Mom's tuna salad was infected with 4 cells of Shigella and has been sitting on the dining room table for 2 hours. Is it safe to eat?

Important Information		Bacteria type:	Shigella
Total Time:	2 hours	Infectious dose:	10 cells
Generation Time:	40 minutes	\# of cells at start:	4 cells

\# of Times Cells Divide	Time Elapsed in Minutes	Number of Cells
0	0	4
1	40	8
2	80	16
3	120	32

No, the tuna salad is not safe to eat after 2 hours of sitting on the table.

1. E. coli $\mathrm{O} 157: \mathrm{H} 7$ has a generation time of 20 minutes and can make you sick with as few as 10 cells. Judy likes to eat her hamburgers medium rare. If her hamburger was contaminated with 2 E. coli O 157 :H7 cells that were not killed during cooking and she waited 20 minutes to eat the hamburger, is it safe to eat?

Important Information	Bacteria type:	
Total Time:	\square	Infectious dose:
Generation Time:	\square	\# of cells at start:

\# of Times Cells Divide	Time Elapsed in Minutes	Number of Cells

Is it safe to eat?

\qquad
2. Under ideal conditions, Salmonella has a generation time of 30 minutes and an infectious dose of $15-20$ cells. Aunt Susie's homemade Ranch salad dressing has been sitting on the picnic table for 2.5 hours. If the dressing started out infected with 3 Salmonella cells, is it safe to eat now?

Important Information	Bacteria type:		
Total Time:	\square	Infectious dose:	\square
Generation Time:	\# of cells at start:		

\# of Times Cells Divide	Time Elapsed in Minutes	Number of Cells

determine if the food is safe to eat.

Is it safe to eat?

\qquad
3. Using the information provided, write your own food safety scenario. Then, complete the table and to

Important Information		Bacteria type:	Campylobacter jejuni
Total Time:	3 hours	Infectious dose:	400-500 cells
Generation Time:	90 minutes	\# of cells at start:	150 cells

Scenario:

Is it safe to eat?

\qquad
\qquad

Part II Directions: Now, rather than using a table, use the formula for exponential growth to determine if the food is safe to eat. Show your work. Then create a line graph for each scenario illustrating the exponential growth curve.
4. E. coli $\mathrm{O} 157: \mathrm{H} 7$ has a generation time of 20 minutes and can make you sick with as few as 10 cells. If Judy's hamburger was contaminated with 2 E. coli $\mathrm{O} 157: \mathrm{H} 7$ cells that were not killed during cooking, determine if it is safe to eat in each of the following situations.

Important Information		Formula:	$y=a(1+\mathbf{b})^{x}$	
Total Time:		\# of cells at start	a	
Generation Time:		Growth Rate	b	
Infectious dose:			\# of times cells divide	x

a. How many E. coli cells would be present (y) if she waited 40 minutes to eat the hamburger? Is it safe to eat?
b. How many E. coli cells would be present (y) if she waited 1 hour to eat the hamburger? Is it safe to eat?
c. Create a graph of the exponential growth curve where the number of times the cells divide is along the x-axis and the total number of bacterial cells is along the y-axis.

Challenge: How many E. coli cells would be presented (y) if she waited 3 hours to eat the hamburger?
5. Under ideal conditions, Salmonella has a generation time of 30 minutes and an infectious dose of $15-20$ cells. If the dressing started out infected with 3 Salmonella cells, determine if it is safe to eat in each of the following situations.

Important Information		Formula:	$y=a(1+\mathrm{b})^{x}$	
Total Time:		\# of cells at start	a	
Generation Time:		Growth Rate	b	
Infectious dose:			\# of times cells divide	x

a. How many Salmonella cells would be present (y) if the homemade salad dressing had been sitting on the picnic table for 1 hour? Is it safe to eat?
b. How many Salmonella cells would be present (y) if the homemade salad dressing had been sitting on the picnic table for 3 hours? Is it safe to eat?
c. Create a graph of the exponential growth curve where the number of times the cells divide is along the x-axis and the total number of bacterial cells is along the y-axis.

CHALLENGE: How many Salmonella cells would be present (y) if the homemade salad dressing had been sitting on the picnic table for 6.5 hours?

